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Abstract
Formation of fermion bag solitons is an important paradigm in the theory of
the hadron structure. We report here on our non-perturbative analysis of this
phenomenon in the (1+1)-dimensional massive Gross–Neveu model, in the
large-N limit. Our main result is that the extremal static bag configurations
are reflectionless, as in the massless Gross–Neveu model. Explicit formulae
for the profiles and masses of these solitons are presented. We also present
a particular type of self-consistent reflectionless solitons which arise in the
massive Nambu–Jona–Lasinio models, in the large-N limit.

PACS numbers: 11.10.Lm, 11.10.Kk, 11.15.Pg, 71.27.+a

1. Introduction

An important dynamical mechanism, by which fundamental particles acquire masses, is
through interactions with vacuum condensates. Thus, a massive particle may carve out
around itself a spherical region [1] or a shell [2] in which the condensate is suppressed, thus
reducing the effective mass of the particle at the expense of volume and gradient energy
associated with the condensate. This picture has interesting phenomenological consequences
[1, 3].

This dynamical distortion of the homogeneous vacuum condensate configuration, namely,
formation of fermion bag solitons, was demonstrated explicitly by Dashen, Hasslacher
and Neveu (DHN) [4] many years ago, who studied semiclassical bound states in the
(1+1)-dimensional Gross–Neveu (GN) model [5], using the inverse scattering method [6].
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Following DHN, Shei [7] has applied the inverse scattering method to study solitons in the
(1+1)-dimensional Nambu–Jona–Lasinio (NJL) model [8] in the large-N limit.

Fermion bags in the GN model were discussed in the literature several other times since
the work of DHN, using alternative methods [9–11]. For a review on these and related matters
(with an emphasis on the relativistic Hartree–Fock approximation) see [12]. For a more recent
review of static fermion bags in the GN model (with an emphasis on reflectionless backgrounds
and supersymmetric quantum mechanics) see [13]. The large-N semiclassical DHN spectrum
of these fermion bags turns out to be essentially correct also for finite N, as analysis of the
exact factorizable S-matrix of the GN model reveals [14].

A variational calculation of these effects in the (1+1)-dimensional massive generalization
of the Gross–Neveu model, which we will refer to as MGN, was carried in [15] a few
years ago, and more recently in [16]. Very recently, we studied static fermion bags in the
MGN model [17], which we obtained using the inverse-scattering formalism, thus avoiding
the need to choose a trial variational field configuration. Our main result in [17] is that
the extremal static bag configurations are reflectionless, as in the massless Gross–Neveu
model.

The GN and massless NJL models are completely integrable, which is why their
S-matrices can be computed exactly. Thus, one may wonder whether DHN’s and Shei’s
successful computation of the soliton spectrum in these models was made possible due to
their integrablity. Our successful computation of the soliton spectrum in the MGN model
indicates that the answer to that question is negative, as the MGN model is believed to be
not completely integrable, unlike its massless counterpart. This raises hope that the soliton
spectrum of more generic and non-integrable low-dimensional models may be computed
explicitly.

Additional strong motivation to studying these models stems from condensed matter
physics. The same features of the (1+1)-dimensional GN and NJL models, which make them
so important in particle physics, namely, that they are exactly solvable models (at large- and
finite-N) which exhibit asymptotic freedom, chiral symmetry breaking, bear a rich soliton
spectrum and their S-matrices can be computed exactly, make these models very important
also in condensed matter physics. Indeed, these models describe the physics of conducting
polymers [18] and one-dimensional inhomogeneous superconductors [19]. They have been
also applied in the description of other strongly correlated electronic systems [20]. For a
recent review of the application of integrable QFT models to problems in condensed matter
physics see [21].

In a series of papers [22], Thies et al have recently completed the computation of the phase
diagram of the MGN model. For a comprehensive review of their work see [23]. Periodic
inhomogeneous condensates—soliton crystals—play an important role in that analysis. (The
soliton profiles presented here are obtained in the limit where the intersoliton spacing in that
crystal becomes very large. This occurs in the low ‘baryon’ density limit.) A nice and
useful feature of [23] is that it gathers in one place the particle and condensed matter physics
applications of the GN and MGN models (and their generalizations), and demonstrates, once
again, the importance of cross-fertilization between these two disciplines.

The rest of this paper is organized as follows: In the following section we briefly review
the results of [17], leaving technical details out. Then, in section 3, we show that a subclass
of the reflectionless solitons of [17] arise self-consistently in the (1+1)-dimensional massive
NJL (MNJL) model. The latter extends the results of [7, 24] for the massless NJL model.
Solitons in the MNJL model were also recently studied in [16], where a derivative expansion
was carried out around a particular soliton background of the corresponding massless NJL
model.
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2. Solitons in the massive Gross–Neveu model

One way of writing the action for the MGN model is

S =
∫

d2x

{
N∑

a=1

ψ̄a[i∂/ − σ ]ψa − 1

2g2
(σ 2 − 2Mσ)

}
, (1)

where ψa (a = 1, . . . , N) are the massive Dirac fermions and σ is an auxiliary field.
Integrating out σ results in an equivalent form of (1), with quartic fermion self-interactions.

An obvious symmetry of (1) with its N Dirac spinors is U(N). Actually, (1) is symmetric
under the larger group O(2N) [4] (see also section 1 of [13]). The fact that the symmetry
group of (1) is O(2N) rather than U(N) is related to the fact that it is invariant against charge
conjugation, like the massless GN model. Consequently, the energy eigenvalues of the Dirac
equation associated with (1), [i∂/ − σ(x)]ψ = 0, come in ±ω pairs.

As usual, the theory (1) can be rewritten with the help of the scalar flavour singlet auxiliary
field σ(x). Also as usual, we take the large-N limit holding λ ≡ Ng2 fixed. Integrating out
the fermions, we obtain the bare effective action

S[σ ] = − 1

2g2

∫
d2x(σ 2 − 2Mσ) − iN Tr log(i∂/ − σ). (2)

Noting that γ5(i∂/ − σ) = −(i∂/ + σ)γ5, we can rewrite the Tr log(i∂/ − σ) as 1
2 Tr log[−(i∂/ −

σ)(i∂/ + σ)]. In this paper we focus on static soliton configurations. If σ is time independent,
the latter expression may be further simplified to T

2

∫
dω
2π

[Tr log(h+ − ω2) + Tr log(h− − ω2)],
where h± ≡ −∂2

x +σ 2 ±σ ′, and where T is an infra-red temporal regulator. As it turns out, the
two Schrödinger operators h± are isospectral (see appendix A of [13] and section 2 of [11])
and thus we obtain

S[σ ] = − 1

2g2

∫
d2x(σ 2 − 2Mσ) − iNT

∫ ∞

−∞

dω

2π
Tr log(h− − ω2). (3)

In contrast to the standard massless GN model, the MGN model studied here is not
invariant under the Z2 symmetry ψ → γ5ψ, σ → −σ , and the physics is correspondingly
quite different. As a result of the Z2 degeneracy of its vacuum, the GN model contains a
soliton (the so-called CCGZ kink [4, 9, 11, 13, 25]) in which the σ field takes on equal
and opposite values at x = ±∞. The stability of this soliton is obviously guaranteed by
topological considerations. With any non-zero M the vacuum value of σ is unique and the
CCGZ kink becomes infinitely massive and disappears. If any soliton exists at all, its stability
has to depend on the energetics of trapping fermions.

Let us briefly recall the computation of the unique vacuum of the MGN model. We shall
follow [15]. For an earlier analysis of the MGN ground state (as well as its thermodynamics)
see [26]. Setting σ to a constant, we obtain from (3) the renormalized effective potential
(per flavour) V (σ,µ) = σ 2

4π
log σ 2

eµ2 + 1
λ(µ)

[
σ 2

2 − M(µ)σ
]
, where µ is a sliding renormalization

scale with λ(µ) = Ng2(µ) and M(µ) is the running couplings. By equating the coefficient
of σ 2 in two versions of V , one defined with µ1 and the other with µ2, we find immediately
that 1

λ(µ1)
− 1

λ(µ2)
= 1

π
logµ1

µ2
and thus the coupling λ is asymptotically free, just as in the GN

model. Furthermore, by equating the coefficient of σ in V we see that the ratio M(µ)

λ(µ)
is a

renormalization group invariant. Thus, M and λ have the same scale dependence.
Without loss of generality we assume that M(µ) > 0 and thus the absolute minimum of

V (σ,µ), namely, the vacuum condensate m = 〈σ 〉, is the unique (and positive) solution of
the gap equation dV

dσ

∣∣
σ=m

= m
[

1
π

logm
µ

+ 1
λ(µ)

] − M(µ)

λ(µ)
= 0. Referring to (1), we see that m is
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the mass of the fermion. Using the explicit scale dependence of λ(µ), we can re-write the gap
equation as m

λ(m)
= M(µ)

λ(µ)
, which shows manifestly that m, an observable physical quantity, is

a renormalization group invariant. This equation also implies that M(m) = m, which makes
sense physically.

Fermion bags correspond to inhomogeneous solutions of the saddle-point equation
δS

δσ (x,t)
= 0. In particular, static bags σ(x) are the extremal configurations of the energy

functional (per flavour) E[σ(x)] = − S[σ(x)]
NT

, subjected to the boundary condition that σ(x)

relaxes to its unique vacuum expectation value m at x = ±∞. More specifically, we have to
evaluate the energy functional of a static configuration σ(x), obeying the appropriate boundary
conditions at spatial infinity, which supports K pairs of bound states of the Dirac equation
at energies ±ωn, n = 1, . . . , K (where, of course, ω2

n < m2). The bound states at ±ωn are
to be considered together, due to the charge-conjugation-invariance of the GN model. Due
to Pauli’s exclusion principle, we can populate each of the bound states ±ωn with up to N
fermions. In such a typical multiparticle state, the negative frequency state is populated by
N − hn fermions (i.e., by hn holes or antiparticles) and the positive frequency state contains
pn fermions (or particles). We shall refer to the total number of particles and antiparticles
trapped in the nth pair of bound states νn = pn + hn as the valence, or occupation number of
that pair.

The energy functional E[σ(x)] is, in principle, a complicated and generally unknown
functional of σ(x) and of its derivatives (which furthermore requires regularization). Thus,
the extremum condition δE[σ ]

δσ (x)
= 0, as a functional equation for σ(x), seems intractable.

The considerable complexity of the functional equations that determine the extremal σ(x)

configurations is the source of all difficulties that arise in any attempt to solve the model under
consideration. DHN found a way around this difficulty in the case of the GN model [4]. They
have used inverse scattering techniques [6] to express the (regulated) energy functional E[σ ]
in terms of the so-called scattering data associated with, e.g. the Hamiltonian h− mentioned
above (and thus with σ(x)), and then solved the extremum condition δE[σ ]

δσ (x)
= 0 with respect

to those data.
The scattering data associated with h− are [6] the reflection amplitude r(k) of the

Schrödinger operator h− at the momentum k, the number K of bound states in h− and their
corresponding energies 0 < ω2

n � m2, (n = 1, . . . , K), and also additional K parameters
{cn}, where cn has to do with the normalization of the nth bound state wavefunction ψn

of h−. More precisely, the nth bound state wavefunction, with energy ω2
n, must decay as

ψn(x) ∼ const exp −κnx as x → ∞, where 0 < κn = √
m2 − ω2

n. If we impose that
ψn(x) be normalized, this will determine the constant coefficient as cn. (With no loss of
generality, we may take cn > 0.) Recall that r(−k) = r∗(k), since the Schrödinger potential
V (x) = σ 2(x) − σ ′(x) is real. Thus, only the values of r(k) for k > 0 enter the scattering
data. The scattering data are independent variables, which determine V (x) uniquely, assuming
V (x) belongs to a certain class of potentials which fall-off fast enough towards infinity. (Since
the MGN does not bear topological solitons, neither h− nor h+ can have a normalizable zero
energy eigenstate. Thus, all the ωn are strictly positive.)

We can apply directly the results of DHN in order to write that part of E[σ(x)] which is
common to the MGN and GN models, i.e. E[σ(x)] with its term proportional to M removed,
in terms of the scattering data. For the lack of space we shall not write DHN’s expression
for the energy functional explicitly. Suffice it is to mention at this point that the ‘DHN-part’
of E[σ(x)] depends on the reflection amplitude only via certain regular dispersion integrals
of the quantity log[1 − |r(k)|2]. The well-known reflectionless nature of solitons in the GN
model is a direct consequence of this simple fact.
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In order to complete the task of expressing the effective action of the MGN model in
terms of the scattering data, we have to find such a representation for the remaining piece of
E[σ(x)] proportional to M, namely, for −M

λ

∫ ∞
−∞ (σ (x) − m) dx. The latter integral cannot

be expressed in terms of the scattering data based on the trace identities of the Schrödinger
operator h− discussed in appendix B of [4]. Evidently, new analysis is required to obtain its
representation in terms of the scattering data. Happily enough, we were able to obtain such a
representation in [17], which reads∫ ∞

−∞
(σ (x) − m) dx = 1

2π i

∫ ∞

−∞

log[1 − |r(k)|2]

im − k
dk +

K∑
n=1

log

(
m − κn

m + κn

)
. (4)

Thus, the M-dependent part of E[σ(x)], like its ‘DHN-part’, depends on the reflection
amplitude only via the combination log[1 − |r(k)|2]. Combining these two terms together,
it follows that δE reg[σ(x)]/δr(k) = F(k)r∗(k)/(1 − |r(k)|2), where F(k) is a calculable
function, which does not vanish identically. Thus, r(k) ≡ 0 is the unique solution of the
variational equation δE reg[σ(x)]/δr(k) = 0. Static extremal bags in the MGN model are
reflectionless, as their counterparts in the GN model.

Explicit formulae for reflectionless σ(x) configurations with an arbitrary number K of
pairs of bound states are displayed in appendix B of [13]. In particular, the one which supports
a single pair of bound states at energies ±ωb

(
κ =

√
m2 − ω2

b

)
, that originally discovered by

DHN, is

σ(x) = m + κ

[
tanh

(
κx − 1

4
log

m + κ

m − κ

)
− tanh

(
κx +

1

4
log

m + κ

m − κ

)]
. (5)

We see that the formidable problem of finding the extremal σ(x) configurations of the
energy functional E[σ ] is reduced to the simpler problem of extremizing an ordinary function
E(ωn, cn) = E[σ(x;ωn, cn)] with respect to the 2K parameters {cn, ωn} that determine the
reflectionless background σ(x). If we solve this ordinary extremum problem, we will be able
to calculate the mass of the fermion bag. This we did in detail in [17]. Let us sketch the
procedure and state the final result.

The bare-regulated energy function E(ωn) which depends on the bare couplings λ and
M and on the UV-cutoff � explicitly can be renormalized, in a manner essentially similar to
the effective potential, as was described above. E is independent of cn’s, which appear in the
scattering data. (The latter are thus flat directions for the energy function and determine the
collective coordinates of the soliton.) The renormalized energy function thus obtained is a sum
of the form

∑K
n=1 f (ωn, νn), where f (ω, ν) is a known function, which depends also on the

physical mass m explicitly, and also through the RG-invariant ratio γ = 1
λ(m)

= M(µ)

mλ(µ)
. Thus,

the extremum condition fixes each ωn in terms of the number of the total number νn of particles
and holes trapped in the bound states of the Dirac equation at ±ωn, and not by the numbers of
trapped particles and holes separately (see (6)). This fact is a manifestation of the underlying
O(2N) symmetry, which treats particles and holes symmetrically. Moreover, it indicates [17]
that this pair of bound states gives rise to an O(2N) antisymmetric tensor multiplet of rank
νn of soliton states. (As it turns out, only tensors of ranks 0 < νn < N correspond to viable
solitons [17].) The soliton as a whole is therefore the tensor product of all these antisymmetric
tensor multiplets. Finally, we showed in [17] that only the irreducible (K = 1) soliton was
protected by energy conservation and O(2N) symmetry against decaying into lighter solitons
(or free massive fermions). Its profile is given by (5), where κ = m sin θ (or, equivalently,
ω = m cos θ ), with 0 < θ < π/2, and where θ is determined by the extremum condition

θ

π
+ γ tan θ = ν

2N
. (6)
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The left-hand side of (6) is a monotonically increasing function. Therefore, (6) has a unique
solution in the interval [0, π/2]. This solution is evidently smaller than θGN = πν

2N
, the

corresponding value of θ in the GN model for the same occupation number. Thus, the
corresponding bound state energy ω = m cos θ in the MGN model is higher than its GN
counterpart, and thus less bound. The soliton mass (i.e., the renormalized energy function,
evaluated at the solution of (6)) is

M(ν) = Nm

(
2

π
sin θ + γ log

1 + sin θ

1 − sin θ

)
. (7)

This coincides with the corresponding results of variational calculations presented in [15, 16],
which were based on (5) as a trial configuration. In fact, it was realized in [16] that the trial
configuration (5) is an exact solution of the extremum condition δE[σ ]

δσ (x)
= 0, provided (6) is

used to fix κ = m sin θ .

3. Reflectionless solitons in the massive Nambu–Jona–Lasinio model

It is natural to enquire whether the results of the previous section carry over to the
phenomenologically interesting MNJL model. The action for the MNJL model may be written
as a generalization of (1), S = ∫

d2x
{∑N

a=1 ψ̄a[i∂/ − (σ + iπγ5)]ψa − 1
2g2 (σ

2 + π2 − 2Mσ)
}
,

where π(x) is a pseudo-scalar auxiliary field. (Here we assumed that the 2 × 2 chiral mass
matrix does not have a pseudo-scalar component, but this does not restrict the generality of our
discussion in any way. This particular orientation of the mass matrix can be always reached
at by performing a global—and therefore, anomaly free—chiral rotation in the σ−π plane.)

As in our discussion of the MGN model, we can integrate the fermions, and obtain the
bare effective action

S[σ ] = − 1

2g2

∫
d2x(σ 2 + π2 − 2Mσ) − iN Tr log(i∂/ − σ − iπγ5). (8)

As before, we take the large-N limit, holding λ ≡ Ng2 fixed. Unlike the NJL model, with its
continuum of degenerate vacua, the ground state of the MNJL model (8) is unique, as in the
MGN model. It corresponds to a constant field configuration, where π = 0 and where σ = m

is determined by an equation identical to that which arises in the MGN model.
Shei [7] has studied static solitons in the NJL model (i.e., M = 0 in (8)) using inverse

scattering techniques. Similarly to DHN’s results for the GN model, he concluded that
extremal soliton profiles are reflectionless. Some of his results were rederived in [24], using
a certain method based on properties of the diagonal resolvent of the Dirac operator (which
was applied first to the GN model in [11]).

Could Shei’s analysis be extended to study solitons in the MNJL model, similarly to
the extension of DHN’s inverse scattering analysis to the MGN model? Could it be that the
self-consistent static soliton backgrounds in the MNJL model are reflectionless? It seems that
all we need in order to answer these questions is a generalization of (4) to the case in which
the Dirac operator involves a pseudo-scalar background π(x). Unfortunately, we were not
able (so-far) to find such a generalization, and therefore we cannot answer these questions in
general at the moment. However, we were able to find a particular family of self-consistent
reflectionless static solitons in the MNJL model by making an educated guess, as we shall
now explain.

The spectrum of the Dirac equation associated with (8) is not invariant against charge
conjugation, unless π(x) ≡ 0. Thus, the bound states corresponding to a static soliton
background are not paired, in general. In particular, as has been shown by Shei, there exist
solitons in the NJL model which bind fermions into a single bound state. However, he has also
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found solitons with the charge-conjugation-invariant spectrum (see equations (3.25)–(3.28)
in [7]), with a pair of bound states ±ωb, in which π(x) = 0 identically, and σ(x) is given
by (5), which thus coincide with the DHN solitons in the GN model, for which ωb = m cos

(
πν
2N

)
and MDHN(ν) = 2Nm

π
sin

(
πν
2N

)
. However, unlike in the GN model, in the NJL model we must

choose p = h = ν
2 (i.e., a soliton of this type must trap an equal number of fermions and

anti-fermions). The reason for this restriction is not hard to understand physically: the total
chiral rotation θ , namely, the difference in arctan π(x)

σ (x)
between the two ends of the one-

dimensional space, must be related to the fermion number charge nf deposited in the soliton
according to θ = − 2πnf

N
[27] (see also equations (5.10) and (5.22) in [24]). The soliton

profile (σ (x), π(x)) under consideration starts at the vacuum point (m, 0) at x = −∞ and
returns to it at x = +∞. Thus, θ = nf = p − h = 0 for this soliton.

Now, any static soliton profile in the MNJL model must start at the unique vacuum (m, 0)

at x = −∞ and return to it at x = +∞. Thus, it should bring about null total chiral rotation,
precisely as Shei’s charge-conjugation-invariant configuration does. Therefore, if the MNJL
bears reflectionless static solitons, they must be of this form (or charge-conjugate-invariant
generalizations thereof, with more pairs of paired bound states). The only thing that should
change compared to the NJL model is the quantization condition, relating ωb and ν.

We have verified that this is indeed the case, simply by substituting this configuration into
the static inhomogeneous saddle-point equations associated with (8). Varying (8) with respect
to π(x) we obviously obtain an equation identical in form to that of the NJL model. (For the
latter, see the second equation in (5.1) in [24]). Using the explicit expressions for the entries
of the diagonal resolvent of the Dirac operator with a reflectionless (σ (x), π(x)) background
with two bound states (equations (4.13) and (4.14) in [24] with paired bound states ω2 = −ω1),
we see that π(x) ≡ 0 is indeed a solution of that equation. (Here, having p = h = ν

2 is
essential.) This π -equation leaves ω1 an undetermined function of ν. We still have to vary
with respect to σ(x). Substituting the explicit expressions for the appropriate entries of the
diagonal resolvent of the Dirac operator (equations (4.13), (4.14) and (2.10) of [24]) in the
saddle-point equation arising from variation with respect to σ(x), and using the simplifying
identity equation (2.24) of [28], we arrive simply at the static saddle-point equation of the
MGN model, which is solved by σ(x) given by (5) and the quantization condition (6), leading
to soliton mass (7). Thus, a restricted subset of the extremal reflectionless solitons of the MGN
model appear, not surprisingly, also in the MNJL model. For these solitons π(x) ≡ 0. The
question whether these solitons exhaust all possibilities in the two-dimensional MNJL model
remains open.
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